Topic 7i: Scatter Plots in R

We will start with the same data values that we had in Topic 7h, but this time we see that we can generate the values using gnrnd4().

gnrnd4(1273370910, 450008500425)

X:	43.7	32.0	56.2	33.6	47.9	50.9	50.5	46.0	42.0	48.9
Y:	46.3	29.0	55.4	42.5	44.8	50.8	48.3	53.9	51.2	49.4

The values are generated in L1 and L2 with L1 holding the x values and L2 holding the y values.

Then we just need to use the function plot(L1, L2) to get our scatter plot.

Of course we can spruce that up a bit by adding horizontal and vertical lines using the abline() function to get:

Let us look at a little bit of real data. Here is a table that gives the levels of carbon monoxide and nitrogen dioxide at one EPA measuring station for a few select dates.

Date	NO2 ppb	CO ppm
1/8/2019	6.26	0.350
1/16/2019	17.08	0.636
1/17/2019	14.85	0.554
1/23/2019	8.44	0.343
1/27/2019	19.37	0.842
1/29/2019	5.78	0.219
2/8/2019	3.10	0.138
2/22/2019	8.73	0.375

If we want to look at the relationship between the two values then we want to create a scatter plot for them. The R statements are given in the associated script. The resulting scatter plot is shown below.

Data from the EPA

